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ABSTRACT 

As road traffic accidents, injuries, and deaths have been persistent throughout the years, 

the demand for road safety development has increased. This study focuses on developing proactive 

safety evaluations of unsignalized intersections by using the proximal surrogate measure of Post-

Encroachment Time (PET) in measuring the risk of transverse collisions. Procedures involved the 

determination of peak hour period, manual measurement of PET, identification of critical conflict 

zones, and development of prediction models for crash estimations. A total of 1551 conflicts were 

observed, in which an average PET value of 3.57s was obtained. The PET dataset was subjected 

to goodness-of-fit tests, and the best-fitting model of Johnson SU distribution was determined. 

Through this statistical model, the probability of right-angle collisions was determined to be 

18.11%. Subsequently, it was estimated that 793 crashes per year are predicted to occur within the 

intersection. The determination of intersection safety levels was unfeasible due to the lack of 

relative safety standards for this procedure. However, the study has provided safety parameters 

that can be used as references in evaluating risk mitigation policies and safety projects for the 

intersection. 

Keywords: road safety, unsignalized T-junction, intersection accident analysis, post-encroachment 

time 

INTRODUCTION 

In a report by the World Health Organization (2018), the number of road traffic deaths has 

increased to 1.35 million global cases in 2016. Moreover, the statistical trend for the number of 

road crashes in Metro Manila is also on the rise (MMDA 2019). Traditional methods of on-road 

safety evaluation involve the use of historical accident data which pose longer and more difficult 

approaches in the process of safety evaluation. Additionally, these types of evaluations lean toward 



 

reactive approaches which depend on the premise that accidents must have occurred first before 

road safety could be evaluated (Killi and Vedagiri 2014). In tackling these growing challenges to 

road safety, it is more desirable to use faster and more efficient methods that are independent of 

using historical accident data in the road safety analysis. 

Traffic conflict technique (TCT) is one of the developing methods in establishing proactive 

road safety analysis. This technique was developed from the concept of analyzing traffic conflicts 

or critical incidents that denote near-collision occurrences (Chin and Quek 1997). Traffic conflict 

is best described as the reactive evasive response of two or more vehicles due to a near-collision 

event (Parker and Zegeer 1989). Research interest in the proactive surrogate approach in 

quantifying the severity and risks of traffic conflicts has gained popularity over the years (Mahmud 

et al. 2016). This approach uses surrogate safety measures or observable events within a traffic 

conflict that can assume highly probable collisions or instances of “almost accidents”, near-misses, 

traffic conflicts, etc. (Varhelyi et al. 2018). These measures attribute several variables such as 

distance, deceleration, and other indicators for vehicle conflict (Mahmud et al. 2016). The 

following are listed surrogate measures for safety evaluation: Time to Collision (TTC), Time 

Exposed Time to Collision (TET), Time Integrated Time to Collision (TIT), Modified TTC 

(MTTC), Crash Index (CI), Time-to-Accident (TA), Time Headway (H), and PET (Mahmud et al. 

2016). PET is the time difference between the last transverse vehicle entry time and first vehicle 

exit time at a certain node. According to Pirdavani et al. (2010), PET is one of the most commonly 

used surrogate measures in evaluating intersections, as it is easier to extract and analyze than of 

general parameters such as TTC. 

In a study by Kili and Vedagiri (2014), surrogate safety measures were used in evaluating 

an unsignalized three-legged intersection, for which they obtained frequency distributions of 



 

vehicle PET that allowed the identification of intersection nodes with the highest conflict 

frequencies. Their follow-up study in 2016 has developed this methodology by using the concept 

of critical speeds, which led them to obtain conflict distributions of different types of turning 

vehicles and evaluate a three-legged intersection into having 20.3% total right-angle or transverse 

conflicts. On the other hand, Songchitruska (2004) conducted an innovative non-crash-based 

safety evaluation of intersections using the extreme value theory approach. A total of 18 four-

legged intersections were considered in their study, in which PET values were determined through 

automated, semi-automated, and manual methods of counting. It was found that the manual 

method of PET determination produced the lowest percentage of measurement error and was 

subsequently used for the study. Additionally, the validity of PET as a safety indicator was also 

tested in Songchitruska’s study, in which historical crash data were used as response variables for 

Poisson and Negative Binomial Regression methods for PET validation. After establishing the 

validity of PET for safety evaluation, the extreme value theory approach was made possible and 

consequently produced annual crash frequency models for 18 intersections in Lafayette, Indiana. 

Multiple studies on the extreme value theory approach for the analysis of proximal surrogate 

measures have then been prominent in the field of road safety research (Farah and Azevedo 2016; 

Pawar et al. 2018; Goyani et al. 2019; Reddy et al. 2019). This growing literature on proximal 

surrogate measures has continuously paved developments in road safety analysis; however, Zheng 

et al. (2014) assert that difficulties in cross-validations and generalizations still inhibit major 

developments in this field.  

This study intends to apply and broaden knowledge on the use of proximal safety analysis. 

It aims to proactively evaluate the road safety performance of an unsignalized T-junction without 

dependence on historical data. It specifically aims to evaluate the frequency of right-angle conflicts 



 

at a T-junction using the proximal surrogate measure of PET, determine critical conflict zones for 

transverse collisions within the intersection, develop and calibrate statistical models for crash 

frequency estimations, and estimate the probability of right-angle collisions within the intersection. 

The study can help in providing a quicker approach to obtaining road safety information, which 

could then evaluate the effectiveness of related road safety policies. The application of this study 

to the selected intersection can help the local traffic offices in obtaining reference data for 

developing intersection safety policies.  

METHODS 

The methodology consists of four major parts, namely: site selection, data collection, data 

extraction and processing, and safety analysis.  

Site Selection 

Selected study area is San Pabo City, a component city in the landlocked province of 

Laguna, Philippines. The land area of the city is about 197 square kilometers which constitutes 

10.25% of Laguna's total area. According to the 2020 Census the population of the city is around 

285,348. This represented 8.44% of the total population of Laguna province. The population 

density is 1,444 inhabitants per square kilometer (PhilAtlas, 2023). The city has a growing 

population and economic activities, hence becoming more congested during peak hours, weekends 

and holidays.  

 In determining specific intersection for the study, the following guidelines on site selection 

according to the literature recommendations were set also considering  available traffic footage 

provided by the San Pablo City Traffic Management Office (SPCTMO): 

 The intersection must be multi-laned and three-legged. 

 The intersection must be unsignalized. 



 

 The intersection must be equipped with surveillance equipment that provides a clear 

perspective over the intersection for traffic data collection. 

 The intersection must be continuously operating. 

 Instances of right-angle collisions are feasibly observable by the surveillance 

equipment. 

The study site of Rizal Avenue-Holy Rosary Street T-Junction was selected based on the 

aforementioned site characteristics. It is an unsignalized three-legged intersection or T-junction 

that is located at the entry point of Barangay Bagong Pook, San Pablo City, Laguna. It connects 

the local road of Holy Rosary street to Rizal Avenue, which serves as a collector road for vehicles 

entering and exiting the city proper. Rizal Avenue operates as a major road with four lanes, in 

which two lanes are dedicated to each opposing traffic. Its northbound traffic leads to the Colago-

Cosico Avenue intersection, while the southbound traffic leads to the San Pablo City Plaza or the 

city proper of San Pablo itself. Holy Rosary street, on the other hand, is a two-lane minor road that 

serves as the main entry point to Barangay Bagong Pook. Moreover, the junction in the study is 

relatively close to the non-operating San Pablo-Malvar Philippine National Railway (PNR) 

railroad track. The intersection is equipped with pavement markings, pedestrian lanes, railroad 

crossing signage, and CCTV footages at video frame rate of 30 fps. Commercial establishments 

near the intersection include gas stations, a Utility Van (UV) – express terminal, and a few 

convenience stores. Figures 1 and 2 show the location of the intersection in both plan and street 

views, respectively. 



 

 

Figure 1. Rizal Avenue-Holy Rosary Street T-Junction Plan View. 

 

Figure 2. Rizal Avenue-Holy Rosary Street T-Junction Street View. 

Traffic Data 

Traffic data to be analyzed for this study is collected through a road inventory survey and 

classified traffic volume count. Figure 3 presents the study intersection sketch, in which geometric 



 

properties and road facilities are shown. The sketch shows that the road widths of the major and 

minor roads are 10.4 m and 4.5 m, respectively. 

 

Figure 3. Study Intersection Sketch. 

A classified traffic volume count was done during peak hour period (10-11 AM) to estimate 

the traffic condition and vehicular composition of the intersection in this study. Each vehicle 

movement was given designations and is presented in Figure 4. All directional movements as 

shown in the figure (V1-V13) were considered to feasibly obtain critical conflict zones for right-

angle collisions. A total of 60 forms have been processed and were encoded in Microsoft Excel 

for analysis. 



 

 

Figure 4. Plan view of the observed vehicle movements in the T-junction. 

Figures 5 and 6 show the 15-minute traffic volume variations at 6 to 11 AM and 3 to 8 PM, 

respectively. The variation charts show that the traffic volume peaked at the period of 10:00 to 

11:00 AM, which has a total flowrate of 5581 pcu/hr.  

 
Figure 5. 15-minute Traffic Volume Variation from 6 to 11 AM. 
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Figure 6. 15-minute Traffic Volume Variation from 3 to 8 PM. 

The traffic volume count for each vehicle classification in the traffic flow is summarized 

in Figure 7. It was found that the traffic flow is mostly composed of three-wheelers (3W), covering 

57% of the overall traffic composition. It could be observed that the traffic composition was greatly 

affected by the IATF regulations, in which PUJs were expected to comprise larger volumes relative 

to the study’s survey. 

 

Figure 7. Overall traffic composition from all lane directions. 
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Data Extraction and Processing 

The peak hour period of 10 to 11 AM was selected based on the traffic volume data, 

utilizing the passenger car equivalent factors (PCEF) set by the Department of Public Works and 

Highways (DPWH). To further characterize the chosen peak hour period, the hourly traffic volume 

per lane direction and the period’s traffic composition were determined. Figure 8 shows the traffic 

volume per lane direction in the selected peak hour period, in which it was determined that the 

traffic direction of V1 obtained the most traffic flow rate with 1839 pcu/hr. Moreover, Figure 9 

summarizes the peak hour period traffic composition. This procedure accounts for the significance 

of traffic volume in the safety evaluation of unsignalized intersections. 

 
Figure 8. Traffic volume per lane direction within the peak hour period. 
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Figure 9. Traffic composition within the peak hour period. 

The manual frame counting method was used in processing the peak hour period footage 

for safety analysis. It involves the determination of conflict zone references for the computation 

of PET counts. For this study, 2.5 m by 2.5 m grids were overlaid on the study site based on the 

study Killi and Vedagiri (2014). The study is limited by the footage specifications, wherein the 

available footages are recorded at a framerate of 24 frames per second (fps). Babu and Vedagiri 

(2016) measured the PET at a framerate of 25 fps, indicating a PET measurement accuracy of 

0.040 s. The study of Killi and Vedagiri (2014), on the other hand, used a playback speed of 6 fps 

which results to a better accuracy of 0.01 s. Their studies indicate that measuring PET at more 

precise frame rates provides better accuracy. This is evident through a manual frame counting 

method since the footage is being analyzed on a frame-by-frame basis. The lower the number of 

frames being played in a second can show more detailed vehicle movement. Additionally, 

limitations include measurement error from the differences between the real-life and image space 

provided by the footage.  The scale of these grids was referenced to the map scale available from 

Google Maps. Through Autodesk AutoCAD, a map-scaled grid was initially overlaid on the top 

view of the intersection in the study and is presented in Figure 10.  
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Figure 10. Overview of reference grids on the study site. 

After which, the 2.5 m by 2.5 m grid was converted to a footage ratio of 704 by 408 pixels 

to be superimposed on the video footage. It should be reiterated that the study assumed a procedure 

that only approximates actual measurements, most particularly on the overlaying of grids on the 

video footage. The adapted procedure still provides close approximations for the accessibility of 

PET counts (Ismail et al. 2013; Kassim et al. 2014) even without the use of camera calibration 

techniques. Overlaid grids on the footage are presented in Figure 11. 

 



 

Figure 11. Reference grid layout on the peak hour video footage. 

Conflict zones were identified through the grid layout according to their type of turning 

movement. Each cell within the grid was given an identification number to allow for easier 

procedures in identifying critical conflict spots. With this, PET counts can then be manually 

processed through simultaneous observation of the processed footage and encoding of conflict 

time instances in a dedicated spreadsheet. From the peak hour footage, the traffic conflicts were 

observed on a frame-by-frame basis. This study focuses on turning conflicts, which is defined by 

the instance of a vehicle exiting a conflicted spot (t1) and the instance of the next vehicle entering 

the same conflict spot (t2). PET can then be calculated using equation 1. The equation denotes the 

time difference between the two observed instances and is represented by a conflict spot. A higher 

difference between t1 and t2 represents a large PET value that depicts a longer time interval before 

a collision happens between the observed vehicles in these two instances. Large values of PET are 

usually disregarded in critical conflicts analysis as these pertain to non-hazardous events (Kassim 

et al., 2014). On the other hand, PET values that are closer to zero are those regarded as traffic 

conflicts. These also include events where PET values are less than zero, wherein such cases 

happen when the next vehicle enters before the first vehicle exits it. Numerically, the recorded 

instance of the first vehicle exiting the conflict spot (t1) will be larger than the recorded instance 

of the next vehicle entering the conflict spot (t2). By Equation 1, a negative PET will be obtained 

in this type of event. 

𝑃𝐸𝑇 =  𝑡2 − 𝑡1                                                               Eq. 1 



 

This procedure was conducted on every turning movement, particularly, right-turning 

movement from the minor road, and left-turning movement from both minor and major roads. The 

type of vehicle involved in an observed traffic conflict was also recorded for statistical analysis.  

Safety Analysis 

Critical conflicts are analyzed through the determination of critical zones and turning 

movements of vehicles within the intersection. Since the PET count procedure has also accounted 

for the location of each conflict instance by providing a dedicated column for conflict zones, the 

number of recurring conflicts for each conflict zone can then be tallied. The same can be done in 

obtaining the most critical turning movement, as PET counts were tallied according to it. 

Easyfit application has then been used to formulate numerical descriptive measures for the 

data collected from PET counts. This is to provide parameters for the distribution fitting processes, 

which would be used in generating calibrated crash frequency prediction models. 

After obtaining the normality of the PET count dataset from descriptive statistics, the data 

is then tested for the best-fitting distribution model via Easyfit. The application uses the tests of 

Kolmogorov-Smirnov (KS), Anderson-Darling, and Chi-Square Goodness-of-fit (GOF) in finding 

the most reliable mathematical model for the obtained dataset. These tests are done by following 

the standard methods of GOF tests, in which the null and alternative hypotheses are evaluated 

through computed test statistics. Easyfit determines the best-fit model by listing the top 

distributions that could fit the data according to their computed test statistic. All tests were done 

in 20%, 10%, 5%, 2%, and 1% levels of significance to determine the minimum range of precision 

at which a model can fit the data.  



 

In estimating the likelihood of crashes, each distribution uses a corresponding probability 

density function and various empirical parameters. These empirical parameters are solved by the 

program through the cumulative probabilities of the actual and theoretical data. Easyfit assumes 

initial theoretical data that closely fits the actual dataset, and the difference between both datasets 

is compared. As determined by Easyfit for this study, the distribution models of Johnson SU, 

Three-Parameter Log-Logistic, and GEV are to be given emphasis. 

Johnson SU uses the function presented in equation 2, where 𝛾 is the shape parameter 1, 𝛿 

is the shape parameter 2, 𝜆 is the scale parameter, and ξ is the location parameter. 

𝑓(𝑥) =
𝛿

𝜆√2𝜋√𝑧2+1
 exp (−

1

2
(𝛾 + 𝛿 ln(𝑧 + √𝑧2 + 1))

2
)                           Eq. 2 

Equation 3 then presents the function used for the Three-Parameter Log-Logistic model, 

where 𝛼 is the shape parameter, 𝛽 is the scale parameter, and 𝛾 is the location parameter. 

𝑓(𝑥) =
𝛼

𝛽
(

𝑥−𝛾

𝛽
)𝛼−1 (1 + (

𝑥−𝛾

𝛽
)

𝛼

)
−2

                                                           Eq. 3 

Lastly, the GEV distribution uses the probability density function presented in equation 4, 

where 𝑘 is the shape parameter, 𝜎 is the scale parameter, 𝜇 is the location parameter. 

𝑓(𝑥) = {

1

𝜎
𝑒𝑥𝑝 (−(1 + 𝑘𝑧)−

1

𝑘) (1 + 𝑘𝑧)−1−
1

𝑘       𝑘 ≠ 0

1

𝜎
𝑒𝑥𝑝(−𝑧 − 𝑒𝑥𝑝(−𝑧))                              𝑘 = 0

                                     Eq.4 

The best-fitted model aims to predict the probability of a PET value less than or equal to 

zero, representing the occurrence of a crash. Since this study used the peak hour period for analysis, 

then the probability of crashes was predicted in hourly intervals. After obtaining the best-fit model 



 

for the data, an annual crash risk frequency estimate can be obtained by using exposure factors. 

Reddy et al. (2019) estimated crash frequency by associating the occurrence of crashes or traffic 

conflicts with unit exposure. By following this premise, the probability obtained from the best-fit 

model can be multiplied to an average exposure time wherein conflicts can happen. This exposure 

time was assumed to be 12 hours per day or 4380 hours in a year. Equation 5 simplifies this 

estimation, where C is the crash frequency per hour in a year, and E is the average hourly exposure 

time in a year. 

𝐶 = (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃𝐸𝑇 < 0𝑠) ∙ (𝐸)                                                     Eq. 5 

RESULTS 

Post-Encroachment Time Data 

A sample of recorded data is provided in Table 1, which shows the spreadsheet format for 

manual PET measurement. The time instances of a first exiting vehicle’s rear end touching the 

edge of a conflict zone are labeled as First Exit (t1), while the events of a last vehicle’s front end 

entering the conflict zone are labeled as Last Entry (t2). Moreover, the frequency of conflicts 

according to conflict spots was also recorded for critical conflicts analysis. 

Table 1. Sample Spreadsheet for Manual PET Measurements in conflict spots. 

Conflict ID Conflict Spot 

First Exit 

(t1) 

Last Entry 

(t2) 
PET (s) Type of Vehicle 

mm ss mm ss  Turning Through 

1 1.4 0 3.04 0 4.09 1.043 3W SEDAN 

2 1.4 0 4.00 0 4.09 0.083 3W 2W 

3 1.4 0 5.80 0 4.09 -1.71 3W 2W 

4 1.4 0 7.67 0 5.84 -1.84 3W VAN 

5 1.4 0 21.60 0 21.77 0.17 SEDAN VAN 

6 1.4 0 21.60 0 25.285 3.67 2W VAN 

7 1.4 0 21.60 0 26.11 4.51 3W VAN 

8 1.4 0 21.60 0 29.07 7.47 3W VAN 

9 1.4 0 21.60 0 31.249 9.64 SEDAN VAN 



 

10 1.4 0 21.60 0 35.20 13.60 3W VAN 

11 1.4 0 37.95 0 36.75 -1.21 3W 3W 

12 1.4 1 0.06 1 8.57 8.51 SEDAN 3W 

13 1.4 1 15.53 1 16.16 0.63 SEDAN SUV 

14 1.4 1 22.62 1 24.469 1.84 SEDAN 2W 

15 1.4 1 30.54 1 29.265 -1.29 3W 3W 

16 1.4 1 44.10 1 45.73 1.63 VAN VAN 

17 1.4 1 58.08 1 59.04 0.96 VAN VAN 

18 1.4 2 1.66 2 2.16 0.50 VAN VAN 

19 1.4 2 17.64 2 17.76 0.13 VAN SEDAN 

20 1.4 2 20.775 2 21.10 0.33 PUJ SEDAN 

 

Critical Zones Determination 

Conflict zone frequencies were tallied according to their type of turning movement. The 

zones with the highest frequencies of traffic conflict are then deemed critical. Table 2 shows the 

summary of conflict frequencies according to their conflict zones. The conflict spot of 1.4 obtained 

the highest number of occurring conflicts with a count of 477. This was followed by conflict spots 

3.4 and 2.4, with 310 and 239 conflicts respectively. Moreover, the event of left-turning vehicles 

from the major road contributed the most in conflict occurrences within the intersection. 

Table 2. Summary of Conflicts According to Conflict Zones for turning vehicles. 

Conflict Zones 

Right-Turning 

Vehicles from 

Minor Road 

Left-Turning 

Vehicles from 

Minor Road 

Left-Turning 

Vehicles from 

Major Road 

Total 

1.1 0 0 0 0 

1.2 0 4 0 4 

1.3 0 0 61 61 

1.4 468 2 7 477 

2.1 0 3 0 3 

2.2 0 9 1 10 

2.3 0 29 168 197 

3.1 0 20 0 20 

3.2 0 25 0 25 

3.3 0 55 84 139 

3.4 0 55 255 310 

4.1 0 2 0 2 



 

4.2 0 22 1 23 

4.3 0 8 14 22 

4.4 0 0 19 19 

Total 473 283 795 1551 

 

Descriptive Statistics 

After processing the PET counts, the resulting dataset was analyzed through descriptive 

statistics and is presented in Table 3. 16 PET values were obtained, which also describes the total 

number of turning vehicle conflicts in the intersection throughout the observation period. The 

mean PET value for the intersection is 3.57s and each observation deviated from the mean by 

4.772s on average. At 95% confidence, the average PET value in the intersection lies within 3.33s 

and 3.81s. The positive skewness value of 2.06 means that there are generally low values of 

observed PET in the intersection, denoting higher risks for right-angle collisions. The measure of 

kurtosis also indicated that the data is not normally distributed. To further characterize the dataset, 

a histogram of the PET count has also been provided in Figure 12. 

Table 3. Descriptive Statistics of PET Count Data. 

Statistic Value 

Sample Size 1551 

Range 60.978 

Mean 3.5663 

Variance 22.772 

Std. Deviation 4.772 

Coef. of Variation 1.3381 

Std. Error 0.12117 

Skewness 2.056 

Excess Kurtosis 12.107 

Minimum -26.944 

Maximum 34.034 

 



 

 

Figure 12. Histogram of PET values. 

Crash Frequency Prediction 

Table 4 summarized the results from the different tests for goodness of fit. It is observed that the 

computed test statistics for all of the tests were higher than the critical values at all levels of 

significance, hence, the null hypothesis is rejected. The actual data does not follow these 

distributions; however, these models have the lowest values of test statistics relative to other fitted 

distributions in Easyfit. The most fitting distribution for the Anderson-Darling test, Kolmogorov-

Smirnov test, and Chi-square GOF test are Johnson SU, GEV, and Johnson SU, respectively.   

Table 4. Summary of Results from the different tests for goodness of fit. 

Type of Test Distribution Parameters Test Statistic 

Critical 

Values (α = 

0.2, 0.1, 

0.05, 0.02, 

0.01) 

Anderson-

Darling Test 

Johnson SU 
γ=-0.92  δ =1.37 

λ=3.82  ξ=-0.03 
17.21 

1.37, 1.93, 

2.50 3.29, 

3.91 

Log-Logistic 

(3P) 
α=18.91  β=38.42  γ=-35.45 19.76 

Cauchy σ=1.70  μ=2.38 36.67 

Probability Density Function

Histogram Gen. Extreme Value

x

322824201612840-4-8-12-16-20-24

f(
x
)

0.64

0.56

0.48

0.4

0.32

0.24

0.16

0.08

0



 

Kolmogorov-

Smirnov Test 

General Extreme 

Value 
k=0.13  σ=2.78  μ=1.58 0.077 

0.03, 0.03, 

0.03, 0.04, 

0.04 

Log-Logistic 

(3P) 
α=18.91  β=38.42  γ=-35.45 0.08 

Johnson SU 
γ=-0.92  δ=1.37 

λ=3.82  ξ=-0.03 
0.083 

Chi-square 

GOF Test 

Johnson SU 
γ=-0.92  δ=1.37 

λ=3.89  ξ=-0.032 
123.92 

13.44, 

15.99, 

18.31, 

21.16, 

23.21 

Log-Logistic 

(3P) 
α=18.91  β=38.42  γ=-35.45 192.81 

Cauchy σ=1.70  μ=2.38 271.87 

 

The top three distributions from the different fitting tests were used for the comparison of 

probability functions for crash risk estimation in which the Johnson SU function was found to be 

the most like the PET histogram. Additionally, it has also been consistently ranked as the topmost 

model in the GOF tests. 

 

Figure 13. The fit of PET values using GEV, Log-Logistic, and Johnson SU distributions. 

Through Equation 2, the probability distribution curve of Johnson SU has been obtained 

and its parameters are evaluated in Table 5. 



 

Table 5. Johnson SU Parameter Values 

Probability Distribution 

Curve 
Parameter Value 

Johnson SU 

𝛾 -0.92 

𝛿 1.37 

𝜆 3.82 

ξ -0.03 

Log-Logistic 

𝛼 18.91 

𝛽 38.42 

𝛾 -35.45 

GEV 

𝑘 0.13 

𝜎 2.78 

𝜇 1.58 

 

 By using the probability density function obtained from Johnson SU, the probability of 

vehicular crash events can be estimated. The probability is computed through the fitted distribution 

profile and is estimated to be 18.11%. It could then be predicted through Equation 5 that 793 

crashes per hour can occur each year.  

DISCUSSION 

Statistical modeling procedures have then found that the top three fitting distributions for 

the PET dataset are Johnson SU, three-parameter Log-Logistic, and GEV models. The resulting 

estimations from these distributions show that the three-parameter log-logistic and GEV models 

tend to estimate lower prediction values; hence, the Johnson SU model was chosen as the best-fit 

model for crash frequency estimation. Using this model, it was found that the probability of right-

angle crashes within the intersection is 18.11%. This probability also pertains to a prediction of 

793 right-angle crashes per year. Given these estimations, it can be said that the unsignalized three-

legged intersection in this study is at relatively lower crash frequency rates as compared to the 

study conducted by Pawar et al. (2018), in which an undivided unsignalized intersection has 



 

obtained an overall estimate of 30% probability of a crash. It was also observed that the resulting 

estimate from this study is lower than the divided intersection variant in the study of Pawar et al., 

which obtained a value of 21% probability of crash estimate. It was concluded from their study 

that divided intersections have lower estimates of crashes due to an improved driving environment 

(Pawar et al. 2018). The results from this study deviated from their conclusions for divided 

unsignalized intersections. Moreover, Reddy et al. (2019) have conducted the same methodology 

on an uncontrolled four-legged intersection to determine the reduction of crash risk induced by the 

installation of speed bumps within the intersection. It was observed from their study that the annual 

crash frequency was 437 crashes per year at the base case of the intersection, which is significantly 

lower than the obtained estimate in this study. For the case of controlled four-legged intersections, 

Songchitruska (2004) has conducted studies on 18 intersections with the same controlled 

configurations, in which the standard annual crashes count of 2.8302 and 3.7910 at 85th and 90th 

percentiles, have been established respectively. It should be noted that the counts for controlled 

intersections deviate significantly from uncontrolled crash estimates. 

The results from previous literature imply that the difference in driving environments and 

intersection configurations are to be considered when comparing safety evaluation studies using 

the procedure of proximal surrogate analysis. Moreover, crash frequency counts from previous 

works are relative to the respective traffic environment in which their studies were done. In order 

to achieve an accurate comparative analysis of crash frequencies, the reference traffic environment 

must be identical. Due to this limitation, concluding if the intersection is safe or unsafe is still 

considered unachievable. As stated by Zheng et al. (2014), it could be established that difficulties 

in the cross-validation and generalization of results are still common in this method due to the 

shortage of standards for researchers to base their comparisons. However, the safety evaluations 



 

for this intersection still stand with the obtained crash risk estimates. This study provided the 

current safety parameters of the intersection, and additional research is needed to establish 

standards for developing intersection safety thresholds. These safety parameters allow the 

evaluation of potential road geometry changes, traffic management policies, and other safety 

mitigation procedures that could affect the risk of transverse collisions within the intersection. 

Furthermore, supplementary studies for the variables presented in the obtained PET dataset can 

also be pursued. 
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